0=-16t^2+160t+35

Simple and best practice solution for 0=-16t^2+160t+35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+160t+35 equation:



0=-16t^2+160t+35
We move all terms to the left:
0-(-16t^2+160t+35)=0
We add all the numbers together, and all the variables
-(-16t^2+160t+35)=0
We get rid of parentheses
16t^2-160t-35=0
a = 16; b = -160; c = -35;
Δ = b2-4ac
Δ = -1602-4·16·(-35)
Δ = 27840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{27840}=\sqrt{64*435}=\sqrt{64}*\sqrt{435}=8\sqrt{435}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{435}}{2*16}=\frac{160-8\sqrt{435}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{435}}{2*16}=\frac{160+8\sqrt{435}}{32} $

See similar equations:

| 1/4-2/3x=1/3 | | 3n-16=4n+12 | | 5x–9=3x+2 | | ‐9‐(9x‐6)=3(4x+6) | | 5(2h–6)–7(h+7)=4h | | 7/12=3/4x-2/3 | | 1.3+5x=-3.41 | | 22/5=a | | 2(-2+2y)=+4 | | 30+6p=7(p-6)-5 | | y-4(4y)=45 | | -3x+5–2x+8=63 | | 5k=60-5k | | t=22 | | X/3-x/9=7x/6-52/3 | | 3x-1/5-1+x/2=3-x-1/2=x | | 135/12=x | | 3y2+6y+2y+4=0 | | 4.1=n-1.7 | | 2z–(–5)=9 | | X=32=6x-10=2x+18 | | Y-2=y-4/2-y-3/3 | | 1/2k-3-2=2-3/4k | | 11x=+7 | | 5x-4=4+3x3 | | 2y-1/2=1/3=y | | 3z-1/4+2z-10=z | | X=6=9x-8=7x+92 | | 3(6-c)/2=-2(2c+1)/3 | | k-10/2=-7=-4 | | 2/3x+1/2x=4 | | 2/3x-1/2x=x |

Equations solver categories